Sunday, November 4, 2007

Electronic waste, "e-waste" or "Waste Electrical and Electronic Equipment" ("WEEE") is a waste type consisting of any broken or unwanted electrical or electronic appliance. It is a point of concern considering that many components of such equipment are considered toxic and are not biodegradable.

Definition of electronic waste
Electronic waste is a valuable source for secondary raw materials, if treated properly, however if not treated properly it is a major source of toxins and carcinogens. Rapid technology change, low initial cost and even planned obsolescence have resulted in a fast growing problem around the globe. Technical solutions are available but in most cases a legal framework, a collection system, logistics and other services need to be implemented before a technical solution can be applied. Electronic waste represents 2 percent of America's trash in landfills, but it equals 70 percent of overall toxic waste. Up to thirty-eight separate chemical elements are incorporated into electronic waste items. The unsustainability of discarding electronics and computer technology is another reason for the need to recycle – or perhaps more practically, reuse – electronic waste.
Electronic waste processing systems have matured in recent years following increased regulatory, public, and commercial scrutiny, and a commensurate increase in entrepreneurial interest. Part of this evolution has involved greater diversion of electronic waste from energy intensive, down-cycling processes (eg. conventional recycling) where equipment is reverted to a raw material form. This diversion is achieved through reuse and refurbishing. The environmental and social benefits of reuse are several: diminished demand for new products and their commensurate requirement for virgin raw materials (with their own environmental externalities not factored into the cost of the raw materials) and larger quantities of pure water and electricity for associated manufacturing, less packaging per unit, availability of technology to wider swaths of society due to greater affordability of products, and diminished use of landfills.
Challenges remain, when materials cannot or will not be reused, conventional recycling or disposal via landfill often follow. Standards for both approaches vary widely by jurisdiction, whether in developed or developing countries. The complexity of the various items to be disposed of, cost of environmentally sound recycling systems, and the need for concerned and concerted action to collect and systematically process equipment are the resources most lacked -- though this is changing. Many of the plastics used in electronic equipment contain flame retardants. These are generally halogens added to the plastic resin, making the plastics difficult to recycle.

Problems caused by electronic waste
In the 1990s some European countries banned the disposal of electronic waste in landfills. This created an e-waste processing industry in Europe. Early in 2003 the EU presented the WEEE and RoHS directives for implementation in 2005 and 2006.
Some states in the US developed policies banning CRTs from landfills. Some e-waste processing is carried out within the US. The processing may be dismantling into metals, plastics and circuit boards or shredding of whole appliances. From 2004 the state of California introduced a Electronic Waste Recycling Fee on all new monitors and televisions sold to cover the cost of recycling. The amount of the fee depends on the size of the monitor. That amount was adjusted on July 1, 2005 in order to match the real cost of recycling. Canada has also begun to take responsibility for electronics recycling. For example, in August of 2007 a fee similar to the one in California was added to the cost of purchasing new televisions, computers, and computer components in British Columbia. The new legislation made recycling mandatory for all of those products.
A typical electronic waste recycling plant as found in some industrialized countries combines the best of dismantling for component recovery with increased capacity to process large amounts of electronic waste in a cost effective-manner. Material is fed into a hopper, which travels up a conveyor and is dropped into the mechanical separator, which is followed by a number of screening and granulating machines. The entire recycling machinery is enclosed and employs a dust collection system. The European Union, South Korea, Japan and Taiwan have already demanded that sellers and manufacturers of electronics be responsible for recycling 75% of them.
Many Asian countries have legislated, or will do so, for electronic waste recycling.
The United States Congress is considering a number of electronic waste bills including the National Computer Recycling Act introduced by Congressman Mike Thompson (D-CA). This bill has continually stalled, however.
In the meantime, several states have passed their own laws regarding electronic waste management. California was the first state to enact such legislation, followed by Maryland, Maine, Washington and Minnesota. More recently, legislatures in Oregon and Texas passed their own laws.

Electronic waste List of substances contained in electronic waste
Polychlorinated biphenyls (PCBs)

Substances in bulk
lead, tin, copper, silicon, carbon, iron and aluminium

Elements in bulk
cadmium and mercury,

Elements in small amounts
germanium, gallium, barium, nickel, tantalum, indium, vanadium, terbium, beryllium, gold, europium, titanium, ruthenium, cobalt, palladium, manganese, silver, antimony, bismuth, selenium, niobium, yttrium, rhodium, platinum, arsenic, lithium, boron, americium

List of examples of devices containing the above elements

Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal
Digger gold
Electronic Waste Recycling Fee
Free Geek - recycling and re-using computer equipment based on the 'Free to all' philosophy.
Green computing
Polychlorinated biphenyls - see Handling Procedures

No comments: